Flows for rectangular matrix models

نویسندگان

  • René Lafrance
  • Robert C. Myers
چکیده

Several new results on the multicritical behavior of rectangular matrix models are presented. We calculate the free energy in the saddle point approximation, and show that at the triple-scaling point, the result is the same as that derived from the recursion formulae. In the triple-scaling limit, we obtain the string equation and a flow equation for arbitrary multicritical points. Parametric solutions are also examined for the limit of almost-square matrix models. This limit is shown to provide an explicit matrix model realization of the scaling equations proposed to describe open-closed string theory. [email protected] [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling and Fractal Concepts in Saturated Hydraulic Conductivity: Comparison of Some Models

Measurement of soil saturated hydraulic conductivity, Ks, is normally affected by flow patterns such as macro pore; however, most current techniques do  not differentiate flow types, causing major problems in describing water and chemical flows within the soil matrix. This study compares eight models for scaling Ks and predicted matrix and macro pore Ks, using a database composed of 50 datasets...

متن کامل

Experimental analysis of shock waves turbulence in contractions with rectangular sections

Formation of shock waves has an important role in supercritical flows studies. These waves are often occurring during passage of supercritical flow in the non-prismatic channels. In the present study, the effect of length of contraction wall of open-channel for two different geometries (1.5 m and 0.5 m) and fixed contraction ratio was investigated on hydraulic parameters of shock waves using ex...

متن کامل

Higher rank numerical ranges of rectangular matrix polynomials

In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...

متن کامل

Evaluation of the role of system matrix in SPECT images reconstructed by OSEM technique

  Introduction: Ordered subset expectation maximization (OSEM), is an effective iterative method for SPECT image reconstruction. The aim of this study is the evaluation of the role of system matrix in OSEM image reconstruction method using four different physical beam radiation models with three detection configurations. Methods: SPECT was done with an arc of 180 deg...

متن کامل

A wave-based computational method for free vibration and buckling analysis of rectangular Reddy nanoplates

In this paper, the wave propagation method is combined with nonlocal elasticity theory to analyze the buckling and free vibration of rectangular Reddy nanoplate. Wave propagation is one of the powerful methods for analyzing the vibration and buckling of structures. It is assumed that the plate has two opposite edges simply supported while the other two edges may be simply supported or clamped. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993